학술논문

Fully abstract compilation via universal embedding
Document Type
Conference
Source
Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming. :103-116
Subject
back-translation polymorphism
fully abstract compilation
logical relations
multi-language semantics
parametricity
secure compilation
universal domain
universal embedding
Language
English
Abstract
A fully abstract compiler guarantees that two source components are observationally equivalent in the source language if and only if their translations are observationally equivalent in the target. Full abstraction implies the translation is secure: target-language attackers can make no more observations of a compiled component than a source-language attacker interacting with the original source component. Proving full abstraction for realistic compilers is challenging because realistic target languages contain features (such as control effects) unavailable in the source, while proofs of full abstraction require showing that every target context to which a compiled component may be linked can be back-translated to a behaviorally equivalent source context. We prove the first full abstraction result for a translation whose target language contains exceptions, but the source does not. Our translation---specifically, closure conversion of simply typed λ-calculus with recursive types---uses types at the target level to ensure that a compiled component is never linked with attackers that have more distinguishing power than source-level attackers. We present a new back-translation technique based on a shallow embedding of the target language into the source language at a dynamic type. Then boundaries are inserted that mediate terms between the untyped embedding and the strongly-typed source. This technique allows back-translating non-terminating programs, target features that are untypeable in the source, and well-bracketed effects.

Online Access