학술논문

Cosmic string loop distribution on all length scales and at any redshift
Document Type
Working Paper
Source
JCAP 1010:003,2010
Subject
Astrophysics - Cosmology and Extragalactic Astrophysics
General Relativity and Quantum Cosmology
High Energy Physics - Phenomenology
High Energy Physics - Theory
Language
Abstract
We analytically derive the expected number density distribution of Nambu-Goto cosmic string loops at any redshift soon after the time of string formation to today. Our approach is based on the Polchinski-Rocha model of loop formation from long strings which we adjust to fit numerical simulations and complement by a phenomenological modelling of gravitational backreaction. Cosmological evolution drives the loop distribution towards scaling on all length scales in both the radiation and matter era. Memory of any reasonable initial loop distribution in the radiation era is shown to be erased well before Big Bang Nucleosynthesis. In the matter era, the loop distribution reaches full scaling, up to some residual loops from the radiation era which may be present for extremely low string tension. Finally, the number density of loops below the gravitational cutoff is shown to be scale independent, proportional to a negative power of the string tension and insensitive to the details of the backreaction modelling. As an application, we show that the energy density parameter of loops today cannot exceed 10^(-5) for currently allowed string tension values, while the loop number density cannot be less than 10^(-6) per Mpc^3. Our result should provide a more robust basis for studying the cosmological consequences of cosmic string loops.
Comment: 24 pages, 4 figures, uses iopart. References added, matches published version