학술논문

A Chandra View of the Normal SO Galaxy NGC 1332: II: Solar Abundances in the Hot Gas and Implications for SN Enrichment
Document Type
Working Paper
Source
Astrophys.J. 617 (2004) 1047-1058
Subject
Astrophysics
Language
Abstract
We present spectral analysis of the diffuse emission in the normal, isolated, moderate-Lx S0 NGC 1332, constraining both the temperature profile and the metal abundances in the ISM. The characteristics of the point source population and the gravitating matter are discussed in two companion papers. The diffuse emission comprises hot gas, with an ~isothermal temperature profile (~0.5 keV), and emission from unresolved point-sources. In contrast with the cool cores of many groups and clusters, we find a small central temperature peak. We obtain emission-weighted abundance contraints within 20 kpc for several key elements: Fe, O, Ne, Mg and Si. The measured iron abundance (Z_Fe=1.1 in solar units; >0.53 at 99% confidence) strongly excludes the very sub-solar values often historically reported for early-type galaxies but agrees with recent observations of brighter galaxies and groups. The abundance ratios, with respect to Fe, of the other elements were also found to be ~solar, although Z_o/Z_Fe was significantly lower (<0.4). Such a low O abundance is not predicted by simple models of ISM enrichment by Type Ia and Type II supernovae, and may indicate a significant contribution from primordial hypernovae. Revisiting Chandra observations of the moderate-Lx, isolated elliptical NGC 720, we obtain similar abundance constraints. Adopting standard SNIa and SNII metal yields, our abundance ratio constraints imply 73+/-5% and 85+/-6% of the Fe enrichment in NGC 1332 and NGC 720, respectively, arises from SNIa. Although these results are sensitive to the considerable systematic uncertainty in the SNe yields, they are in good agreement with observations of more massive systems. These two moderate-Lx early-type galaxies reveal a consistent pattern of metal enrichment from cluster scales to moderate Lx/Lb galaxies. (abridged)
Comment: 12 pages, 4 figures, accepted for publication in ApJ. Minor changes to match published version