학술논문

Overcoming leakage in scalable quantum error correction
Document Type
Working Paper
Author
Miao, Kevin C.McEwen, MattAtalaya, JuanKafri, DvirPryadko, Leonid P.Bengtsson, AndreasOpremcak, AlexSatzinger, Kevin J.Chen, ZijunKlimov, Paul V.Quintana, ChrisAcharya, RajeevAnderson, KyleAnsmann, MarkusArute, FrankArya, KunalAsfaw, AbrahamBardin, Joseph C.Bourassa, AlexandreBovaird, JennaBrill, LeonBuckley, Bob B.Buell, David A.Burger, TimBurkett, BrianBushnell, NicholasCampero, JuanChiaro, BenCollins, RobertoConner, PaulCrook, Alexander L.Curtin, BenDebroy, Dripto M.Demura, SeanDunsworth, AndrewErickson, CatherineFatemi, RezaFerreira, Vinicius S.Burgos, Leslie FloresForati, EbrahimFowler, Austin G.Foxen, BrooksGarcia, GonzaloGiang, WilliamGidney, CraigGiustina, MarissaGosula, RajaDau, Alejandro GrajalesGross, Jonathan A.Hamilton, Michael C.Harrington, Sean D.Heu, PaulaHilton, JeremyHoffmann, Markus R.Hong, SabrinaHuang, TrentHuff, AshleyIveland, JustinJeffrey, EvanJiang, ZhangJones, CodyKelly, JulianKim, SeonKostritsa, FedorKreikebaum, John MarkLandhuis, DavidLaptev, PavelLaws, LilyLee, KennyLester, Brian J.Lill, Alexander T.Liu, WayneLocharla, AdityaLucero, ErikMartin, StevenMegrant, AnthonyMi, XiaoMontazeri, ShirinMorvan, AlexisNaaman, OferNeeley, MatthewNeill, CharlesNersisyan, AniNewman, MichaelNg, Jiun HowNguyen, AnthonyNguyen, MurrayPotter, RebeccaRocque, CharlesRoushan, PedramSankaragomathi, KannanSchuster, ChristopherShearn, Michael J.Shorter, AaronShutty, NoahShvarts, VladimirSkruzny, JindraSmith, W. ClarkeSterling, GeorgeSzalay, MarcoThor, DouglasTorres, AlfredoWhite, TheodoreWoo, Bryan W. K.Yao, Z. JamieYeh, PingYoo, JuhwanYoung, GraysonZalcman, AdamZhu, NingfengZobrist, NicholasNeven, HartmutSmelyanskiy, VadimPetukhov, AndreKorotkov, Alexander N.Sank, DanielChen, Yu
Source
Subject
Quantum Physics
Language
Abstract
Leakage of quantum information out of computational states into higher energy states represents a major challenge in the pursuit of quantum error correction (QEC). In a QEC circuit, leakage builds over time and spreads through multi-qubit interactions. This leads to correlated errors that degrade the exponential suppression of logical error with scale, challenging the feasibility of QEC as a path towards fault-tolerant quantum computation. Here, we demonstrate the execution of a distance-3 surface code and distance-21 bit-flip code on a Sycamore quantum processor where leakage is removed from all qubits in each cycle. This shortens the lifetime of leakage and curtails its ability to spread and induce correlated errors. We report a ten-fold reduction in steady-state leakage population on the data qubits encoding the logical state and an average leakage population of less than $1 \times 10^{-3}$ throughout the entire device. The leakage removal process itself efficiently returns leakage population back to the computational basis, and adding it to a code circuit prevents leakage from inducing correlated error across cycles, restoring a fundamental assumption of QEC. With this demonstration that leakage can be contained, we resolve a key challenge for practical QEC at scale.
Comment: Main text: 7 pages, 5 figures