학술논문

Increasing the dimensionality of quantum walks using multiple walkers
Document Type
Working Paper
Source
Journal of Computational and Theoretical Nanoscience, 10, 1644 (2013)
Subject
Quantum Physics
Language
Abstract
We show that with the addition of multiple walkers, quantum walks on a line can be transformed into lattice graphs of higher dimension. Thus, multi-walker walks can simulate single-walker walks on higher dimensional graphs and vice versa. This exponential complexity opens up new applications for present-day quantum walk experiments. We discuss the applications of such higher-dimensional structures and how they relate to linear optics quantum computing. In particular we show that multi-walker quantum walks are equivalent to the BosonSampling model for linear optics quantum computation proposed by Aaronson & Arkhipov. With the addition of control over phase-defects in the lattice, which can be simulated with entangling gates, asymmetric lattice structures can be constructed which are universal for quantum computation.
Comment: 9 pages