학술논문

Separation of Wigner and Continuum-continuum Delays by Mirror-symmetry-broken Attosecond Interferometry
Document Type
Working Paper
Source
Subject
Quantum Physics
Physics - Atomic Physics
Language
Abstract
Photoionization of matter is one of the fastest electronic processes in nature. Experimental measurements of photoionization dynamics have become possible through attosecond metrology. However, all experiments reported to date contain a so-far unavoidable measurement-induced contribution, known as continuum-continuum (CC) or Coulomb-laser-coupling delay. Exploiting the recently characterized circularly polarized attosecond pulse trains, we introduce the concept of mirror-symmetry-broken attosecond interferometry, which enables the direct and separate measurement of both the native one-photon ionization delays as well as the continuum-continuum delays. Our technique solves the longstanding challenge of experimentally isolating both the native one-photon-ionization (or Wigner) delays and the measurement-induced (CC) delays. This advance opens the door to a new generation of precision measurements that is likely to drive major progress in experimental and theoretical attosecond science with implications for benchmarking the accuracy of electronic-structure and electron-dynamics methods.
Comment: 6 figures