학술논문

The GAPS programme at TNG XLIV. Projected rotational velocities of 273 exoplanet-host stars observed with HARPS-N
Document Type
Working Paper
Source
A&A 676, A90 (2023)
Subject
Astrophysics - Solar and Stellar Astrophysics
Astrophysics - Earth and Planetary Astrophysics
Language
Abstract
The leading spectrographs used for exoplanets' sceince offer online data reduction softwares (DRS) that yield as an ancillary result the full-width at half-maximum (FWHM) of the cross-correlation function (CCF) that is used to estimate the radial velocity of the host star. The FWHM also contains information on the stellar projected rotational velocity vsini We wanted to establish a simple relationship to derive the vsini directly from the FWHM computed by the HARPS-N DRS in the case of slow-rotating solar-like stars. This may also help to recover the stellar inclination i, which in turn affects the exoplanets' parameters. We selected stars with an inclination of the spin axis compatible with 90 deg by looking at exoplanetary transiting systems with known small sky-projected obliquity: for these stars, we can presume that vsini is equal to stellar equatorial velocity veq. We derived their rotational periods from photometric time-series and their radii from SED fitting. This allowed us to recover their veq, which we could compare to the FWHM values of the CCFs obtained both with G2 and K5 spectral type masks. We obtained an empirical relation for each mask, useful for slow rotators (FWHM < 20 km/s). We applied them to 273 exoplanet-host stars observed with HARPS-N, obtaining homogeneous vsini measurements. We compared our results with the literature ones to confirm the reliability of our work, and we found a good agreement with the values found with more sophisticated methods for stars with log g > 3.5. We also tried our relations on HARPS and SOPHIE data, and we conclude that they can be used also on FWHM derived by HARPS DRS with G2 and K5 mask, and they may be adapted to the SOPHIE data as long as the spectra are taken in the high-resolution mode. We were also able to recover or constrain i for 12 objects with no prior vsini estimation.
Comment: 15 pages, 16 figures, long table missing in arXiV version, accepted for publication in A\&A