학술논문

Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment
Document Type
Working Paper
Author
Daya Bay CollaborationAn, F. P.Balantekin, A. B.Band, H. R.Bishai, M.Blyth, S.Cao, D.Cao, G. F.Cao, J.Cen, W. R.Chan, Y. L.Chang, J. F.Chang, L. C.Chang, Y.Chen, H. S.Chen, Q. Y.Chen, S. M.Chen, Y. X.Chen, Y.Cheng, J. -H.Cheng, J.Cheng, Y. P.Cheng, Z. K.Cherwinka, J. J.Chu, M. C.Chukanov, A.Cummings, J. P.de Arcos, J.Deng, Z. Y.Ding, X. F.Ding, Y. Y.Diwan, M. V.Dolgareva, M.Dove, J.Dwyer, D. A.Edwards, W. R.Gill, R.Gonchar, M.Gong, G. H.Gong, H.Grassi, M.Gu, W. Q.Guan, M. Y.Guo, L.Guo, X. H.Guo, Z.Hackenburg, R. W.Han, R.Hans, S.He, M.Heeger, K. M.Heng, Y. K.Higuera, A.Hor, Y. K.Hsiung, Y. B.Hu, B. Z.Hu, T.Hu, W.Huang, E. C.Huang, H. X.Huang, X. T.Huber, P.Huo, W.Hussain, G.Jaffe, D. E.Jaffke, P.Jen, K. L.Jetter, S.Ji, X. P.Ji, X. L.Jiao, J. B.Johnson, R. A.Jones, D.Joshi, J.Kang, L.Kettell, S. H.Kohn, S.Kramer, M.Kwan, K. K.Kwok, M. W.Kwok, T.Langford, T. J.Lau, K.Lebanowski, L.Lee, J.Lee, J. H. C.Lei, R. T.Leitner, R.Leung, J. K. C.Li, C.Li, D. J.Li, F.Li, G. S.Li, Q. J.Li, S.Li, S. C.Li, W. D.Li, X. N.Li, Y. F.Li, Z. B.Liang, H.Lin, C. J.Lin, G. L.Lin, S.Lin, S. K.Lin, Y. -C.Ling, J. J.Link, J. M.Littenberg, L.Littlejohn, B. R.Liu, D. W.Liu, J. L.Liu, J. C.Loh, C. W.Lu, C.Lu, H. Q.Lu, J. S.Luk, K. B.Lv, Z.Ma, Q. M.Ma, X. Y.Ma, X. B.Ma, Y. Q.Malyshkin, Y.Caicedo, D. A. MartinezMcDonald, K. T.McKeown, R. D.Mitchell, I.Mooney, M.Nakajima, Y.Napolitano, J.Naumov, D.Naumova, E.Ngai, H. Y.Ning, Z.Ochoa-Ricoux, J. P.Olshevskiy, A.Pan, H. -R.Park, J.Patton, S.Pec, V.Peng, J. C.Pinsky, L.Pun, C. S. J.Qi, F. Z.Qi, M.Qian, X.Raper, N.Ren, J.Rosero, R.Roskovec, B.Ruan, X. C.Steiner, H.Sun, G. X.Sun, J. L.Tang, W.Taychenachev, D.Treskov, K.Tsang, K. V.Tull, C. E.Viaux, N.Viren, B.Vorobel, V.Wang, C. H.Wang, M.Wang, N. Y.Wang, R. G.Wang, W.Wang, X.Wang, Y. F.Wang, Z.Wang, Z. M.Wei, H. Y.Wen, L. J.Whisnant, K.White, C. G.Whitehead, L.Wise, T.Wong, H. L. H.Wong, S. C. F.Worcester, E.Wu, C. -H.Wu, Q.Wu, W. J.Xia, D. M.Xia, J. K.Xing, Z. Z.Xu, J. Y.Xu, J. L.Xu, Y.Xue, T.Yang, C. G.Yang, H.Yang, L.Yang, M. S.Yang, M. T.Ye, M.Ye, Z.Yeh, M.Young, B. L.Yu, Z. Y.Zeng, S.Zhan, L.Zhang, C.Zhang, H. H.Zhang, J. W.Zhang, Q. M.Zhang, X. T.Zhang, Y. M.Zhang, Y. X.Zhang, Z. J.Zhang, Z. Y.Zhang, Z. P.Zhao, J.Zhao, Q. W.Zhao, Y. B.Zhong, W. L.Zhou, L.Zhou, N.Zhuang, H. L.Zou, J. H.
Source
Phys. Rev. D 95, 072006 (2017)
Subject
High Energy Physics - Experiment
Nuclear Experiment
Physics - Instrumentation and Detectors
Language
Abstract
A measurement of electron antineutrino oscillation by the Daya Bay Reactor Neutrino Experiment is described in detail. Six 2.9-GW$_{\rm th}$ nuclear power reactors of the Daya Bay and Ling Ao nuclear power facilities served as intense sources of $\overline{\nu}_{e}$'s. Comparison of the $\overline{\nu}_{e}$ rate and energy spectrum measured by antineutrino detectors far from the nuclear reactors ($\sim$1500-1950 m) relative to detectors near the reactors ($\sim$350-600 m) allowed a precise measurement of $\overline{\nu}_{e}$ disappearance. More than 2.5 million $\overline{\nu}_{e}$ inverse beta decay interactions were observed, based on the combination of 217 days of operation of six antineutrino detectors (Dec. 2011--Jul. 2012) with a subsequent 1013 days using the complete configuration of eight detectors (Oct. 2012--Jul. 2015). The $\overline{\nu}_{e}$ rate observed at the far detectors relative to the near detectors showed a significant deficit, $R=0.949 \pm 0.002(\mathrm{stat.}) \pm 0.002(\mathrm{syst.})$. The energy dependence of $\overline{\nu}_{e}$ disappearance showed the distinct variation predicted by neutrino oscillation. Analysis using an approximation for the three-flavor oscillation probability yielded the flavor-mixing angle $\sin^22\theta_{13}=0.0841 \pm 0.0027(\mathrm{stat.}) \pm 0.0019(\mathrm{syst.})$ and the effective neutrino mass-squared difference of $\left|{\Delta}m^2_{\mathrm{ee}}\right|=(2.50 \pm 0.06(\mathrm{stat.}) \pm 0.06(\mathrm{syst.})) \times 10^{-3}\ {\rm eV}^2$. Analysis using the exact three-flavor probability found ${\Delta}m^2_{32}=(2.45 \pm 0.06(\mathrm{stat.}) \pm 0.06(\mathrm{syst.})) \times 10^{-3}\ {\rm eV}^2$ assuming the normal neutrino mass hierarchy and ${\Delta}m^2_{32}=(-2.56 \pm 0.06(\mathrm{stat.}) \pm 0.06(\mathrm{syst.})) \times 10^{-3}\ {\rm eV}^2$ for the inverted hierarchy.
Comment: 44 pages, 44 figures