학술논문

The Hidden Nematic Fluctuations in the Triclinic (Ca0.85La0.15)10(Pt3As8)(Fe2As2)5 Superconductor Revealed by Ultrafast Optical Spectroscopy
Document Type
Working Paper
Source
Phys. Rev. B 108, 205136 (2023)
Subject
Condensed Matter - Superconductivity
Condensed Matter - Strongly Correlated Electrons
Language
Abstract
We reported the quasiparticle relaxation dynamics of an optimally doped triclinic iron-based superconductor (Ca$_{0.85}$La$_{0.15}$)$_{10}$(Pt$_3$As$_8$)(Fe$_2$As$_2$)$_5$ with bulk $T_c$ = 30 K using polarized ultrafast optical pump-probe spectroscopy. Our results reveal anisotropic transient reflectivity induced by nematic fluctuations develops below $T_{nem}$ $\approx$ 120 K and persists in the superconducting states. Measurements under high pump fluence reveal three distinct, coherent phonon modes at frequencies of 1.6, 3.5, and 4.7 THz, corresponding to $A_{1g}(1)$, $E_g$, and $A_{1g}(2)$ modes, respectively. The high-frequency $A_{1g}(2)$ mode corresponds to the $c$-axis polarized vibrations of FeAs planes with a nominal electron-phonon coupling constant $\lambda _{A_{1g}(2)}$ $\approx$ 0.139 $\pm$ 0.02. Our findings suggest that the superconductivity and nematic state are compatible but competitive at low temperatures, and the $A_{1g}$ phonons play an important role in the formation of Cooper pairs in (Ca$_{0.85}$La$_{0.15}$)$_{10}$(Pt$_3$As$_8$)(Fe$_2$As$_2$)$_5$.
Comment: 6 pages, 3 figures and Supplemental Materials