학술논문

Microwave seeding time crystal in Floquet driven Rydberg atoms
Document Type
Working Paper
Source
Subject
Condensed Matter - Quantum Gases
Physics - Atomic Physics
Language
Abstract
Crystal seeding enables a deeper understanding of phase behavior, leading to the development of methods for controlling and manipulating phase transitions in various applications such as materials synthesis, crystallization processes, and phase transformation engineering. How to seed a crystalline in time domain is an open question, which is of great significant and may provide an avenue to understand and control time-dependent quantum many-body physics. Here, we utilize a microwave pulse as a seed to induce the formation of a discrete time crystal in Floquet driven Rydberg atoms. In the experiment, the periodic driving on Rydberg states acts as a seeded crystalline order in subspace, which triggers the time-translation symmetry breaking across the entire ensemble. The behavior of the emergent time crystal is elaborately linked to alterations in the seed, such as the relative phase shift and the frequency difference, which result in phase dependent seeding and corresponding shift in periodicity of the time crystal, leading to embryonic synchronization. This result opens up new possibilities for studying and harnessing time-dependent quantum many-body phenomena, offering insights into the behavior of complex many-body systems under seeding.