학술논문

Photon-mediated long range coupling of two Andreev level qubits
Document Type
Working Paper
Source
Subject
Condensed Matter - Mesoscale and Nanoscale Physics
Condensed Matter - Superconductivity
Quantum Physics
Language
Abstract
In a superconducting weak link, the supercurrent is carried by Andreev bound states (ABSs) formed by the phase-coherent reflection of electrons and their time-reversed partners. A single, highly transmissive ABS can serve as an ideal, compact two-level system, due to a potentially large energy difference to the next ABS. While the coherent manipulation of such Andreev levels qubits (ALQs) has been demonstrated, a long-range coupling between two ALQs, necessary for advanced qubit architectures, has not been achieved, yet. Here, we demonstrate a coherent remote coupling between two ALQs, mediated by a microwave photon in a novel superconducting microwave cavity coupler. The latter hosts two modes with different coupling rates to an external port. This allows us to perform fast readout of each qubit using the strongly coupled mode, while the weakly coupled mode is utilized to mediate the coupling between the qubits. When both qubits are tuned into resonance with the latter mode, we find excitation spectra with avoided-crossings, in very good agreement with the Tavis-Cummings model. Based on this model, we identify highly entangled two-qubit states for which the entanglement is mediated over a distance of six millimeters. This work establishes ALQs as compact and scalable solid-state qubits.
Comment: 13 pages, 7 figures