학술논문

Early Planet Formation in Embedded Disks (eDisk) XII: Accretion streamers, protoplanetary disk, and outflow in the Class I source Oph IRS63
Document Type
Working Paper
Source
Subject
Astrophysics - Solar and Stellar Astrophysics
Astrophysics - Earth and Planetary Astrophysics
Astrophysics - Astrophysics of Galaxies
Language
Abstract
We present ALMA observations of the Class I source Oph IRS63 in the context of the Early Planet Formation in Embedded Disks (eDisk) large program. Our ALMA observations of Oph IRS63 show a myriad of protostellar features, such as a shell-like bipolar outflow (in $^{12}$CO), an extended rotating envelope structure (in $^{13}$CO), a streamer connecting the envelope to the disk (in C$^{18}$O), and several small-scale spiral structures seen towards the edge of the dust continuum (in SO). By analyzing the velocity pattern of $^{13}$CO and C$^{18}$O, we measure a protostellar mass of $\rm M_\star = 0.5 \pm 0.2 $~$\rm M_\odot$ and confirm the presence of a disk rotating at almost Keplerian velocity that extends up to $\sim260$ au. These calculations also show that the gaseous disk is about four times larger than the dust disk, which could indicate dust evolution and radial drift. Furthermore, we model the C$^{18}$O streamer and SO spiral structures as features originating from an infalling rotating structure that continuously feeds the young protostellar disk. We compute an envelope-to-disk mass infall rate of $\sim 10^{-6}$~$\rm M_\odot \, yr^{-1}$ and compare it to the disk-to-star mass accretion rate of $\sim 10^{-8}$~$\rm M_\odot \, yr^{-1}$, from which we infer that the protostellar disk is in a mass build-up phase. At the current mass infall rate, we speculate that soon the disk will become too massive to be gravitationally stable.
Comment: 26 pages and 17 figures