학술논문

Resource savings from fault-tolerant circuit design
Document Type
Working Paper
Source
Subject
Computer Science - Computational Engineering, Finance, and Science
Computer Science - Information Theory
Language
Abstract
Using fault-tolerant constructions, computations performed with unreliable components can simulate their noiseless counterparts though the introduction of a modest amount of redundancy. Given the modest overhead required to achieve fault-tolerance, and the fact that increasing the reliability of basic components often comes at a cost, are there situations where fault-tolerance may be more economical? We present a general framework to account for this overhead cost in order to effectively compare fault-tolerant to non-fault-tolerant approaches for computation, in the limit of small logical error rates. Using this detailed accounting, we determine explicit boundaries at which fault-tolerant designs become more efficient than designs that achieve comparable reliability through direct consumption of resources. We find that the fault-tolerant construction is always preferred in the limit of high reliability in cases where the resources required to construct a basic unit grows faster than $\log(1 / \epsilon)$ asymptotically for small $\epsilon$.
Comment: 15 pages, 7 figures