학술논문

Comparing Shor and Steane Error Correction Using the Bacon-Shor Code
Document Type
Working Paper
Source
Subject
Quantum Physics
Language
Abstract
Quantum states can quickly decohere through interaction with the environment. Quantum error correction is a method for preserving coherence through active feedback. Quantum error correction encodes the quantum information into a logical state with a high-degree of symmetry. Perturbations are first detected by measuring the symmetries of the quantum state and then corrected by applying a set of gates based on the measurements. In order to measure the symmetries without perturbing the data, ancillary quantum states are required. Shor error correction uses a separate quantum state for the measurement of each symmetry. Steane error correction maps the perturbations onto a logical ancilla qubit, which is then measured to check several symmetries simultaneously. Here we experimentally compare Shor and Steane correction of bit flip errors using the Bacon-Shor code implemented in a chain of 23 trapped atomic ions. We find that the Steane error correction provides better logical error rates after a single-round of error correction and less disturbance to the data qubits without error correction.