학술논문

Junction conditions in Palatini $f(R)$ gravity
Document Type
Working Paper
Source
Subject
General Relativity and Quantum Cosmology
Language
Abstract
We work out the junction conditions for $f(R)$ gravity formulated in metric-affine (Palatini) spaces using a tensor distributional approach. These conditions are needed for building consistent models of gravitating bodies with an interior and exterior regions matched at some hypersurface. Some of these conditions depart from the standard Darmois-Israel ones of General Relativity and from their metric $f(R)$ counterparts. In particular, we find that the trace of the stress-energy momentum tensor in the bulk must be continuous across the matching hypersurface, though its normal derivative need not to. We illustrate the relevance of these conditions by considering the properties of stellar surfaces in polytropic models, showing that the range of equations of state with potentially pathological effects is shifted beyond the domain of physical interest. This confirms, in particular, that neutron stars and white dwarfs can be safely modelled within the Palatini $f(R)$ framework.
Comment: 7 pages; some additions in conclusions and references' list. Version accepted for publication on Class. Quant. Grav