학술논문

The Maker-Breaker percolation game on a random board
Document Type
Working Paper
Source
Subject
Mathematics - Probability
Mathematics - Combinatorics
Language
Abstract
The $(m,b)$ Maker-Breaker percolation game on $(\mathbb{Z}^2)_p$, introduced by Day and Falgas-Ravry, is played in the following way. Before the game starts, each edge of $\mathbb{Z}^2$ is removed independently with probability $1-p$. After that, Maker chooses a vertex $v_0$ to protect. Then, in each round Maker and Breaker claim respectively $m$ and $b$ unclaimed edges of $G$. Breaker wins if after the removal of the edges claimed by him the component of $v_0$ becomes finite, and Maker wins if she can indefinitely prevent Breaker from winning. We show that for any $p < 1$, Breaker almost surely has a wining strategy for the $(1,1)$ game on $(\mathbb{Z}^2)_p$. This fully answers a question of Day and Falgas-Ravry, who showed that for $p = 1$ Maker has a winning strategy for the $(1,1)$ game. Further, we show that in the $(2,1)$ game on $(\mathbb{Z}^2)_p$ Maker almost surely has a winning strategy whenever $p > 0.9402$, while Breaker almost surely has a winning strategy whenever $p < 0.5278$. This shows that the threshold value of $p$ above which Maker has a winning strategy for the $(2,1)$ game on $\mathbb{Z}^2$ is non-trivial. In fact, we prove similar results in various settings, including other lattices and biases $(m,b)$. These results extend also to the most general case, which we introduce, where each edge is given to Maker with probability $\alpha$ and to Breaker with probability $\beta$ before the game starts.
Comment: 34 pages, 6 figures