학술논문

Improving Continuous-variable Quantum Channels with Unitary Averaging
Document Type
Working Paper
Source
Subject
Quantum Physics
Language
Abstract
A significant hurdle for quantum information and processing using bosonic systems is stochastic phase errors which occur as the photons propagate through a channel. These errors will reduce the purity of states passing through the channel and so reducing the channels capacity. We present a scheme of passive linear optical unitary averaging for protecting unknown Gaussian states transmitted through an optical channel. The scheme reduces the effect of phase noise on purity, squeezing and entanglement, thereby enhancing the channel via probabilistic error correcting protocol. The scheme is robust to loss and typically succeeds with high probability. We provide both numerical simulations and analytical approximations tailored for relevant parameters with the improvement of practical and current technology. We also show the asymptotic nature of the protocol, highlighting both current and future relevance.
Comment: 10 pages, 6 figures, 1 table