학술논문

Coherent scattering from coupled two level systems
Document Type
Working Paper
Source
Subject
Quantum Physics
Language
Abstract
We study the resonance fluorescence properties of an optically active spin 1/2 system, elucidating the effects of a magnetic field on the coherence of the scattered light. We derive a master equation model for this system that reproduces the results of a two level system (TLS) while also being applicable to a spin system with ground state coupling. This model is then solved analytically in the weak excitation regime. The inclusion of spin dynamics in our model alters the properties of the coherently scattered light at a fundamental level. For a TLS the coherence properties are known to be determined by the input laser. We show that spin scattered light inherits the coherence properties of the spin. This mapping allows us to measure spin dynamics and coherence time through direct measurement of the scattered fields. Furthermore, we show the ability to resolve sub-natural linewidth zeeman splittings. Along with representing an invaluable tool for spin spectroscopy understanding the coherence properties of the spin-scattered field will be vital for spin-photon based quantum technologies.
Comment: 13 pages, 6 figures