학술논문

Measurement of the distribution of $^{207}$Bi depositions on calibration sources for SuperNEMO
Document Type
Working Paper
Source
Subject
Physics - Instrumentation and Detectors
Language
Abstract
The SuperNEMO experiment will search for neutrinoless double-beta decay ($0\nu\beta\beta$), and study the Standard-Model double-beta decay process ($2\nu\beta\beta$). The SuperNEMO technology can measure the energy of each of the electrons produced in a double-beta ($\beta\beta$) decay, and can reconstruct the topology of their individual tracks. The study of the double-beta decay spectrum requires very accurate energy calibration to be carried out periodically. The SuperNEMO Demonstrator Module will be calibrated using 42 calibration sources, each consisting of a droplet of $^{207}$Bi within a frame assembly. The quality of these sources, which depends upon the entire $^{207}$Bi droplet being contained within the frame, is key for correctly calibrating SuperNEMO's energy response. In this paper, we present a novel method for precisely measuring the exact geometry of the deposition of $^{207}$Bi droplets within the frames, using Timepix pixel detectors. We studied 49 different sources and selected 42 high-quality sources with the most central source positioning.
Comment: 16 pages, 12 figures, submitted to JINST, response to reviewer comments