학술논문

Hyperion: The origin of the stars A far-UV space telescope for high-resolution spectroscopy over wide fields
Document Type
Working Paper
Source
Subject
Astrophysics - Solar and Stellar Astrophysics
Astrophysics - Earth and Planetary Astrophysics
Astrophysics - Astrophysics of Galaxies
Astrophysics - Instrumentation and Methods for Astrophysics
Language
Abstract
We present Hyperion, a mission concept recently proposed to the December 2021 NASA Medium Explorer announcement of opportunity. Hyperion explores the formation and destruction of molecular clouds and planet-forming disks in nearby star-forming regions of the Milky Way. It does this using long-slit, high-resolution spectroscopy of emission from fluorescing molecular hydrogen, which is a powerful far-ultraviolet (FUV) diagnostic. Molecular hydrogen (H2) is the most abundant molecule in the universe and a key ingredient for star and planet formation, but is typically not observed directly because its symmetric atomic structure and lack of a dipole moment mean there are no spectral lines at visible wavelengths and few in the infrared. Hyperion uses molecular hydrogen's wealth of FUV emission lines to achieve three science objectives: (1) determining how star formation is related to molecular hydrogen formation and destruction at the boundaries of molecular clouds; (2) determining how quickly and by what process massive star feedback disperses molecular clouds; and (3) determining the mechanism driving the evolution of planet-forming disks around young solar-analog stars. Hyperion conducts this science using a straightforward, highly-efficient, single-channel instrument design. Hyperion's instrument consists of a 48 cm primary mirror, with an f/5 focal ratio. The spectrometer has two modes, both covering 138.5-161.5 nm bandpasses. A low resolution mode has a spectral resolution of R>10,000 with a slit length of 65 arcmin, while the high resolution mode has a spectral resolution of R>50,000 over a slit length of 5 armin. Hyperion occupies a 2 week long, high-earth, Lunar resonance TESS-like orbit, and conducts 2 weeks of planned observations per orbit, with time for downlinks and calibrations. Hyperion was reviewed as Category I, which is the highest rating possible, but was not selected.
Comment: Accepted to JATIS, 9 Figures