학술논문

Swin UNETR++: Advancing Transformer-Based Dense Dose Prediction Towards Fully Automated Radiation Oncology Treatments
Document Type
Working Paper
Source
Subject
Electrical Engineering and Systems Science - Image and Video Processing
Computer Science - Computer Vision and Pattern Recognition
Language
Abstract
The field of Radiation Oncology is uniquely positioned to benefit from the use of artificial intelligence to fully automate the creation of radiation treatment plans for cancer therapy. This time-consuming and specialized task combines patient imaging with organ and tumor segmentation to generate a 3D radiation dose distribution to meet clinical treatment goals, similar to voxel-level dense prediction. In this work, we propose Swin UNETR++, that contains a lightweight 3D Dual Cross-Attention (DCA) module to capture the intra and inter-volume relationships of each patient's unique anatomy, which fully convolutional neural networks lack. Our model was trained, validated, and tested on the Open Knowledge-Based Planning dataset. In addition to metrics of Dose Score $\overline{S_{\text{Dose}}}$ and DVH Score $\overline{S_{\text{DVH}}}$ that quantitatively measure the difference between the predicted and ground-truth 3D radiation dose distribution, we propose the qualitative metrics of average volume-wise acceptance rate $\overline{R_{\text{VA}}}$ and average patient-wise clinical acceptance rate $\overline{R_{\text{PA}}}$ to assess the clinical reliability of the predictions. Swin UNETR++ demonstrates near-state-of-the-art performance on validation and test dataset (validation: $\overline{S_{\text{DVH}}}$=1.492 Gy, $\overline{S_{\text{Dose}}}$=2.649 Gy, $\overline{R_{\text{VA}}}$=88.58%, $\overline{R_{\text{PA}}}$=100.0%; test: $\overline{S_{\text{DVH}}}$=1.634 Gy, $\overline{S_{\text{Dose}}}$=2.757 Gy, $\overline{R_{\text{VA}}}$=90.50%, $\overline{R_{\text{PA}}}$=98.0%), establishing a basis for future studies to translate 3D dose predictions into a deliverable treatment plan, facilitating full automation.
Comment: Extended Abstract presented at Machine Learning for Health (ML4H) symposium 2023, December 10th, 2023, New Orleans, United States, 16 pages