학술논문

Conditional Independence Testing for Discrete Distributions: Beyond $\chi^2$- and $G$-tests
Document Type
Working Paper
Source
Subject
Mathematics - Statistics Theory
Statistics - Computation
Statistics - Methodology
Language
Abstract
This paper is concerned with the problem of conditional independence testing for discrete data. In recent years, researchers have shed new light on this fundamental problem, emphasizing finite-sample optimality. The non-asymptotic viewpoint adapted in these works has led to novel conditional independence tests that enjoy certain optimality under various regimes. Despite their attractive theoretical properties, the considered tests are not necessarily practical, relying on a Poissonization trick and unspecified constants in their critical values. In this work, we attempt to bridge the gap between theory and practice by reproving optimality without Poissonization and calibrating tests using Monte Carlo permutations. Along the way, we also prove that classical asymptotic $\chi^2$- and $G$-tests are notably sub-optimal in a high-dimensional regime, which justifies the demand for new tools. Our theoretical results are complemented by experiments on both simulated and real-world datasets. Accompanying this paper is an R package UCI that implements the proposed tests.