학술논문

The ALMA-QUARKS Survey: II. the ACA 1.3 mm continuum source catalog and the assembly of dense gas in massive star-forming clumps
Document Type
Working Paper
Source
Subject
Astrophysics - Astrophysics of Galaxies
Astrophysics - Solar and Stellar Astrophysics
Language
Abstract
Leveraging the high resolution, high sensitivity, and wide frequency coverage of the Atacama Large Millimeter/submillimeter Array (ALMA), the QUARKS survey, standing for "Querying Underlying mechanisms of massive star formation with ALMA-Resolved gas Kinematics and Structures", is observing 139 massive star-forming clumps at ALMA Band 6 ($\lambda\sim$ 1.3 mm). This paper introduces the Atacama Compact Array (ACA) 7-m data. Combining multi-wavelength data, we provide the first edition of QUARKS atlas, offering insights into the multiscale and multiphase interstellar medium in high-mass star formation. The ACA 1.3 mm catalog includes 207 continuum sources that are called ACA sources. Their gas kinetic temperatures are estimated using three formaldehyde (H$_2$CO) transitions with a non-LTE radiation transfer model, and the mass and density are derived from a dust emission model. The ACA sources are massive (16-84 percentile values of 6-160 $M_{\odot}$), gravity-dominated ($M\propto R^{1.1}$) fragments within massive clumps, with supersonic turbulence ($\mathcal{M}>1$) and embedded star-forming protoclusters. We find a linear correlation between the masses of the fragments and the massive clumps, with a ratio of 6% between the two. When considering the fragments as representative of dense gas, the ratio indicates a dense gas fraction (DGF) of 6%, although with a wide scatter ranging from 1% to 10%. If we consider the QUARKS massive clumps to be what is observed at various scales, then the size-independent DGF indicates a self-similar fragmentation or collapsing mode in protocluster formation. With the ACA data over four orders of magnitude of luminosity-to-mass ratio ($L/M$), we find that the DGF increases significantly with $L/M$, which indicates clump evolutionary stage. We observed a limited fragmentation at the subclump scale, which can be explained by dynamic global collapse process.
Comment: 24 pages, 7 figures. Accepted for publication in Research in Astronomy and Astrophysics. QUARKS atlas link: https://drive.google.com/file/d/1KTqXxCDduYepvLd9kIvZVSSytK48OmfL/view?usp=sharing