학술논문

Spectral effects of radiating gases on the ignition in a multiswirl staged model combustor using full-spectrum k distribution method -- A Large Eddy Simulation Investigation
Document Type
Working Paper
Source
Subject
Physics - Fluid Dynamics
Language
Abstract
Radiative heat transfer has been proven to be important during the ignition process in gas turbine. Those radiating gases (CO2, H2O, CO) generated during combustion may display strong spectral, or nongray behavior, which is difficult to both characterize and calculate. In this work, both the full-spectrum k-distribution (FSK) and weighted-sum-of-gray-gases (WSGG) method, along with the Dynamic-thickened-flame (DTF) and Large-Eddy-Simulation (LES) methods, are used to analyze how spectral behavior affects the ignition process in an experimental gas turbine. Results show that radiation affects the ignition process by heating the relatively low temperature regions. Consequently, each ignition phase is differently affected by different spectral treatments. During the initial kernel phase, spectral properties have minimal influence on flame structures and the ignition delay time due to the negligible radiation and optically-thin scenario. However, during the flame growth phase, significant differences appear in the flame structure and the flame propagation speed among different spectral treatments. After the flame fill the combustor and during the stable combustion phase, differences in flame structures calculated by different models become less, but radiation still play an important role in combustion. Therefore, high-fidelity spectral models are recommended during the modelling of the ignition process in the gas turbine.