학술논문

First measurement of a long-lived $\pi^+ \pi^-$ atom lifetime
Document Type
Working Paper
Source
Phys. Rev. Lett. 122, 082003 (2019)
Subject
High Energy Physics - Experiment
Nuclear Experiment
Language
Abstract
The adapted DIRAC experiment at the CERN PS accelerator observed for the first time long-lived hydrogen-like $\pi^+\pi^-$ atoms, produced by protons hitting a beryllium target. A part of these atoms crossed the gap of 96~mm and got broken up in the 2.1~\textmu{}m thick platinum foil. Analysing the observed number of atomic pairs, $n_A^L= \left.436^{+157}_{-61}\right|_\mathrm{tot}$, the lifetime of the 2$p$ state is found to be ${\tau_{2p}=(\left.0.45^{+1.08}_{-0.30}\right|_\mathrm{tot}) \cdot10^{-11}}$s, not contradicting the corresponding QED $2p$ state lifetime ${\tau_{2p}^\mathrm{QED}=1.17 \cdot 10^{-11}}$s. This lifetime value is three orders of magnitude larger than our previously measured value of the $\pi^+\pi^-$ atom ground state lifetime $\tau=(\left.3.15^{+0.28}_{-0.26}\right|_\mathrm{tot})\cdot 10^{-15}$s. Further studies of long-lived $\pi^+\pi^-$ atoms will allow to measure energy differences between $p$ and $s$ atomic states and so to determine $\pi\pi$ scattering lengths with the aim to check QCD predictions.
Comment: 7 pages, 8 figures