학술논문

Dark Matter Science in the Era of LSST
Document Type
Working Paper
Author
Bechtol, KeithDrlica-Wagner, AlexAbazajian, Kevork N.Abidi, MuntazirAdhikari, SusmitaAli-Haïmoud, YacineAnnis, JamesAnsarinejad, BehzadArmstrong, RobertAsorey, JacoboBaccigalupi, CarloBanerjee, ArkaBanik, NilanjanBennett, CharlesBeutler, FlorianBird, SimeonBirrer, SimonBiswas, RahulBiviano, AndreaBlazek, JonathanBoddy, Kimberly K.Bonaca, AnaBorrill, JulianBose, SownakBovy, JoFrye, BrendaBrooks, Alyson M.Buckley, Matthew R.Buckley-Geer, ElizabethBulbul, EsraBurchat, Patricia R.Burgess, CliffCalore, FrancescaCaputo, ReginaCastorina, EmanueleChang, ChihwayChapline, GeorgeCharles, EricChen, XingangClowe, DouglasCohen-Tanugi, JohannComparat, JohanCroft, Rupert A. C.Cuoco, AlessandroCyr-Racine, Francis-YanD'Amico, GuidoDavis, Tamara MDawson, William A.de la Macorra, AxelDi Valentino, EleonoraRivero, Ana DíazDigel, SethDodelson, ScottDoré, OlivierDvorkin, CoraEckner, ChristopherEllison, JohnErkal, DenisFarahi, AryaFassnacht, Christopher D.Ferreira, Pedro G.Flaugher, BrennaForeman, SimonFriedrich, OliverFrieman, JoshuaGarcía-Bellido, JuanGawiser, EricGerbino, MartinaGiannotti, MaurizioGill, Mandeep S. S.Gluscevic, VeraGolovich, NathanGontcho, Satya Gontcho AGonzález-Morales, Alma X.Grin, DanielGruen, DanielHearin, Andrew P.Hendel, DavidHezaveh, Yashar D.Hirata, Christopher M.Hložek, ReneeHoriuchi, ShunsakuJain, BhuvneshJee, M. JamesJeltema, Tesla E.Kamionkowski, MarcKaplinghat, ManojKeeley, Ryan E.Keeton, Charles R.Khatri, RishiKoposov, Sergey E.Koushiappas, Savvas M.Kovetz, Ely D.Lahav, OferLam, CaseyLee, Chien-HsiuLi, Ting S.Liguori, MicheleLin, TongyanLisanti, MariangelaLoVerde, MarilenaLu, Jessica R.Mandelbaum, RachelMao, Yao-YuanMcDermott, Samuel D.McNanna, MitchMedford, MichaelMeerburg, P. DanielMeyer, ManuelMirbabayi, MehrdadMishra-Sharma, SiddharthMarc, MoniezMore, SurhudMoustakas, JohnMuñoz, Julian B.Murgia, SimonaMyers, Adam D.Nadler, Ethan O.Necib, LinaNewburgh, LauraNewman, Jeffrey A.Nord, BrianNourbakhsh, ErfanNuss, EricO'Connor, PaulPace, Andrew B.Padmanabhan, HamsaPalmese, AntonellaPeiris, Hiranya V.Peter, Annika H. G.Piacentni, FrancescoPiacentini, FrancescoPlazas, AndrésPolin, Daniel A.Prakash, AbhishekPrescod-Weinstein, ChandaRead, Justin I.Ritz, StevenRobertson, Brant E.Rose, BenjaminRosenfeld, RogerioRossi, GrazianoSamushia, LadoSánchez, JavierSánchez-Conde, Miguel A.Schaan, EmmanuelSehgal, NeelimaSenatore, LeonardoSeo, Hee-JongShafieloo, ArmanShan, HuanyuanShipp, NoraSimon, Joshua D.Simon, SaraSlatyer, Tracy R.Slosar, AnžeSridhar, SrivatsanStebbins, AlbertStraniero, OscarStrigari, Louis E.Tait, Tim M. P.Tollerud, ErikTroxel, M. A.Tyson, J. AnthonyUhlemann, CoraUrenña-López, L. ArturoVerma, AprajitaVilalta, RicardoWalter, Christopher W.Wang, Mei-YuWatson, ScottWechsler, Risa H.Wittman, DavidXu, WeishuangYanny, BrianYoung, SamYu, Hai-BoZaharijas, GabrijelaZentner, Andrew R.Zuntz, Joe
Source
Subject
Astrophysics - Cosmology and Nongalactic Astrophysics
Astrophysics - High Energy Astrophysical Phenomena
High Energy Physics - Experiment
Language
Abstract
Astrophysical observations currently provide the only robust, empirical measurements of dark matter. In the coming decade, astrophysical observations will guide other experimental efforts, while simultaneously probing unique regions of dark matter parameter space. This white paper summarizes astrophysical observations that can constrain the fundamental physics of dark matter in the era of LSST. We describe how astrophysical observations will inform our understanding of the fundamental properties of dark matter, such as particle mass, self-interaction strength, non-gravitational interactions with the Standard Model, and compact object abundances. Additionally, we highlight theoretical work and experimental/observational facilities that will complement LSST to strengthen our understanding of the fundamental characteristics of dark matter.
Comment: 11 pages, 2 figures, Science Whitepaper for Astro 2020, more information at https://lsstdarkmatter.github.io