학술논문

Weyl-like points from band inversions of spin-polarised surface states in NbGeSb
Document Type
Working Paper
Source
Subject
Condensed Matter - Materials Science
Condensed Matter - Mesoscale and Nanoscale Physics
Language
Abstract
Band inversions are key to stabilising a variety of novel electronic states in solids, from topological surface states in inverted bulk band gaps of topological insulators to the formation of symmetry-protected three-dimensional Dirac and Weyl points and nodal-line semimetals. Here, we create a band inversion not of bulk states, but rather between manifolds of surface states. We realise this by aliovalent substitution of Nb for Zr and Sb for S in the ZrSiS family of nonsymmorphic semimetals. Using angle-resolved photoemission and density-functional theory, we show how two pairs of surface states, known from ZrSiS, are driven to intersect each other in the vicinity of the Fermi level in NbGeSb, as well as to develop pronounced spin-orbit mediated spin splittings. We demonstrate how mirror symmetry leads to protected crossing points in the resulting spin-orbital entangled surface band structure, thereby stabilising surface state analogues of three-dimensional Weyl points. More generally, our observations suggest new opportunities for engineering topologically and symmetry-protected states via band inversions of surface states.
Comment: In press at Nature Communications. This is the originally submitted manuscript prior to changes during the review process. Contains 20+6 pages, including Supplementary Information