학술논문

Constraints on the magnetic field in the inter-cluster bridge A399-A401
Document Type
Working Paper
Source
A&A 679, A107 (2023)
Subject
Astrophysics - Cosmology and Nongalactic Astrophysics
Language
Abstract
Galaxy cluster mergers are natural consequences of the structure formation in the Universe. Such events involve a large amount of energy ($\sim 10^{63}$ erg) dissipated during the process. Part of this energy can be channelled in particle acceleration and magnetic field amplification, enhancing non-thermal emission of the intra- and inter-cluster environment. Recently, low-frequency observations have detected a bridge of diffuse synchrotron emission connecting two merging galaxy clusters, Abell 399 and Abell 401. Such a result provides clear observational evidence of relativistic particles and magnetic fields in-between clusters. In this work, we have used LOw Frequency ARray (LOFAR) observations at 144 MHz to study for the first time the polarized emission in the A399-A401 bridge region. No polarized emission was detected from the bridge region. Assuming a model where polarization is generated by multiple shocks, depolarization can be due to Faraday dispersion in the foreground medium with respect to the shocks. We constrained its Faraday dispersion to be greater than 0.10 rad m$^{-2}$ at 95% confidence level, which corresponds to an average magnetic field of the bridge region greater than 0.46 nG (or 0.41 nG if we include regions of the Faraday spectrum that are contaminated by Galactic emission). This result is largely consistent with the predictions from numerical simulations for Mpc regions where the gas density is $\sim 300$ times larger than the mean gas density.
Comment: 12 pages, 13 figures; accepted in A&A