학술논문

Back To The Roots: Tree-Based Algorithms for Weakly Supervised Anomaly Detection
Document Type
Working Paper
Source
Subject
High Energy Physics - Phenomenology
High Energy Physics - Experiment
Physics - Data Analysis, Statistics and Probability
Language
Abstract
Weakly supervised methods have emerged as a powerful tool for model-agnostic anomaly detection at the Large Hadron Collider (LHC). While these methods have shown remarkable performance on specific signatures such as di-jet resonances, their application in a more model-agnostic manner requires dealing with a larger number of potentially noisy input features. In this paper, we show that using boosted decision trees as classifiers in weakly supervised anomaly detection gives superior performance compared to deep neural networks. Boosted decision trees are well known for their effectiveness in tabular data analysis. Our results show that they not only offer significantly faster training and evaluation times, but they are also robust to a large number of noisy input features. By using advanced gradient boosted decision trees in combination with ensembling techniques and an extended set of features, we significantly improve the performance of weakly supervised methods for anomaly detection at the LHC. This advance is a crucial step towards a more model-agnostic search for new physics.
Comment: 11 pages, 9 figures