학술논문

Comparing Hyper-optimized Machine Learning Models for Predicting Efficiency Degradation in Organic Solar Cells
Document Type
Working Paper
Source
Subject
Computer Science - Machine Learning
Language
Abstract
This work presents a set of optimal machine learning (ML) models to represent the temporal degradation suffered by the power conversion efficiency (PCE) of polymeric organic solar cells (OSCs) with a multilayer structure ITO/PEDOT:PSS/P3HT:PCBM/Al. To that aim, we generated a database with 996 entries, which includes up to 7 variables regarding both the manufacturing process and environmental conditions for more than 180 days. Then, we relied on a software framework that brings together a conglomeration of automated ML protocols that execute sequentially against our database by simply command-line interface. This easily permits hyper-optimizing and randomizing seeds of the ML models through exhaustive benchmarking so that optimal models are obtained. The accuracy achieved reaches values of the coefficient determination (R2) widely exceeding 0.90, whereas the root mean squared error (RMSE), sum of squared error (SSE), and mean absolute error (MAE)>1% of the target value, the PCE. Additionally, we contribute with validated models able to screen the behavior of OSCs never seen in the database. In that case, R2~0.96-0.97 and RMSE~1%, thus confirming the reliability of the proposal to predict. For comparative purposes, classical Bayesian regression fitting based on non-linear mean squares (LMS) are also presented, which only perform sufficiently for univariate cases of single OSCs. Hence they fail to outperform the breadth of the capabilities shown by the ML models. Finally, thanks to the standardized results offered by the ML framework, we study the dependencies between the variables of the dataset and their implications for the optimal performance and stability of the OSCs. Reproducibility is ensured by a standardized report altogether with the dataset, which are publicly available at Github.