학술논문

Bogoliubov Quasiparticle on the Gossamer Fermi Surface in Electron-Doped Cuprates
Document Type
Working Paper
Source
Subject
Condensed Matter - Superconductivity
Condensed Matter - Strongly Correlated Electrons
Language
Abstract
In contrast to hole-doped cuprates, electron-doped cuprates consistently exhibit strong antiferromagnetic correlations with a commensurate ({\pi}, {\pi}) ordering wave vector, leading to the prevalent belief that antiferromagnetic spin fluctuations mediate Cooper pairing in these unconventional superconductors. However, early investigations produced two paradoxical findings: while antiferromagnetic spin fluctuations create the largest pseudogap at "hot spots" in momentum space, Raman scattering and angle-resolved photoemission spectroscopy measurements using the leading-edge method seem to suggest the superconducting gap is also maximized at these locations. This presented a dilemma for spin-fluctuation-mediated pairing: Cooper pairing is strongest at momenta where normal state low energy spectral weight is most suppressed. Here we investigate this dilemma in Nd2-xCexCuO4 using angle-resolved photoemission spectroscopy under significantly improved experimental conditions. The unprecedented signal-to-noise ratio and resolution allow us to directly observe the Bogoliubov quasiparticles, demonstrating the existence and importance of two sectors of states: 1. The reconstructed main band and the states gapped by the antiferromagnetic pseudogap around the hot spots. 2. The gossamer Fermi surface states with distinct dispersion inside the pseudogap, from which Bogoliubov quasiparticle coherence peaks emerge below Tc. Supported by numerical results, we propose that the non-zero modulus of the antiferromagnetic order parameter causes the former, while fluctuations in the antiferromagnetic order parameter orientation are responsible for the latter. Our revelations of the gossamer Fermi surface reconcile the paradoxical observations, deepening our understanding of superconductivity in electron-doped cuprates in particular, and unconventional superconductivity in general.
Comment: Submitted version 30 pages, 4 main figures, 8 extended data figures. Accepted version in press at Nature Physics