학술논문

An Acoustic Simulation Framework to Support Indoor Positioning and Data Driven Signal Processing Assessments
Document Type
Working Paper
Source
Subject
Electrical Engineering and Systems Science - Audio and Speech Processing
Electrical Engineering and Systems Science - Signal Processing
Language
Abstract
We present an indoor acoustic simulation framework that supports both ultrasonic and audible signaling. The framework opens the opportunity for fast indoor acoustic data generation and positioning development. The improved Pyroomacoustics-based physical model includes both an image-source model (ISM) and ray tracing method to simulate acoustic signaling in geometric spaces that extend typical shoe-box rooms. Moreover, it offers the convenience to facilitate multiple speakers and microphones with different directivity patterns. In addition to temperature and air absorption, the room reverberation is taken into account characterized by the RT60 value or the combination of building materials. Additional noise sources can be added by means of post processing and/or extra speakers. Indoor positioning methods assessed in simulation are compared with real measurements in a testbed, called 'Techtile'. This analysis confirms that the simulation results are close to the measurements and form a realistic representation of the reality. The simulation framework is constructed in a modular way, and parts can be replaced or modified to support different application domains. The code is made available open source.