학술논문

Search for joint multimessenger signals from potential Galactic PeVatrons with HAWC and IceCube
Document Type
Working Paper
Author
Alfaro, R.Alvarez, C.Arteaga-Velázquez, J. C.Rojas, D. AvilaSolares, H. A. AyalaBabu, R.Belmont-Moreno, E.Caballero-Mora, K. S.Capistrán, T.Carramiñana, A.Casanova, S.Cotti, U.Cotzomi, J.de León, S. CoutiñoDe la Fuente, E.Depaoli, D.Di Lalla, N.Hernandez, R. DiazDíaz-Vélez, J. C.Engel, K.Ergin, T.Fan, K. L.Fang, K.Fraija, N.Fraija, S.García-González, J. A.Garfias, F.González, M. M.Goodman, J. A.Groetsch, S.Harding, J. P.Hernández-Cadena, S.Herzog, I.Huang, D.Hueyotl-Zahuantitla, F.Hüntemeyer, P.Iriarte, A.Kaufmann, S.Lee, J.Vargas, H. LeónLonginotti, A. L.Luis-Raya, G.Malone, K.Martínez-Castro, J.Matthews, J. A.Miranda-Romagnoli, P.Montes, J. A.Moreno, E.Mostafá, M.Nellen, L.Omodei, N.Osorio, M.Araujo, Y. PérezPérez-Pérez, E. G.Rho, C. D.Rosa-González, D.Salazar, H.Salazar-Gallegos, D.Sandoval, A.Schneider, M.Serna-Franco, J.Smith, A. J.Son, Y.Tibolla, O.Tollefson, K.Torres, I.Torres-Escobedo, R.Turner, R.Ureña-Mena, F.Wang, X.Watson, I. J.Whitaker, K.Willox, E.Wu, H.Yun-Cárcamo, S.Zhou, H.de León, C.Abbasi, R.Ackermann, M.Adams, J.Agarwalla, S. K.Aguilar, J. A.Ahlers, M.Alameddine, J. M.Amin, N. M.Andeen, K.Argüelles, C.Ashida, Y.Athanasiadou, S.Ausborm, L.Axani, S. N.Bai, X.V., A. BalagopalBaricevic, M.Barwick, S. W.Bash, S.Basu, V.Bay, R.Beatty, J. J.Tjus, J. BeckerBeise, J.Bellenghi, C.Benning, C.BenZvi, S.Berley, D.Bernardini, E.Besson, D. Z.Blaufuss, E.Bloom, L.Blot, S.Bontempo, F.Motzkin, J. Y. BookMeneguolo, C. BoscoloBöser, S.Botner, O.Böttcher, J.Braun, J.Brinson, B.Brostean-Kaiser, J.Brusa, L.Burley, R. T.Butterfield, D.Campana, M. A.Caracas, I.Carloni, K.Carpio, J.Chattopadhyay, S.Chau, N.Chen, Z.Chirkin, D.Choi, S.Clark, B. A.Coleman, A.Collin, G. H.Connolly, A.Conrad, J. M.Coppin, P.Corley, R.Correa, P.Cowen, D. F.Dave, P.De Clercq, C.DeLaunay, J. J.Delgado, D.Deng, S.Desai, A.Desiati, P.de Vries, K. D.de Wasseige, G.DeYoung, T.Diaz, A.Dierichs, P.Dittmer, M.Domi, A.Draper, L.Dujmovic, H.Dutta, K.DuVernois, M. A.Ehrhardt, T.Eidenschink, L.Eimer, A.Eller, P.Ellinger, E.Mentawi, S. ElElsässer, D.Engel, R.Erpenbeck, H.Evans, J.Evenson, P. A.Farrag, K.Fazely, A. R.Fedynitch, A.Feigl, N.Fiedlschuster, S.Finley, C.Fischer, L.Fox, D.Franckowiak, A.Fukami, S.Fürst, P.Gallagher, J.Ganster, E.Garcia, A.Garcia, M.Garg, G.Genton, E.Gerhardt, L.Ghadimi, A.Girard-Carillo, C.Glaser, C.Glüsenkamp, T.Gonzalez, J. G.Goswami, S.Granados, A.Grant, D.Gray, S. J.Gries, O.Griffin, S.Griswold, S.Groth, K. M.Günther, C.Gutjahr, P.Ha, C.Haack, C.Hallgren, A.Halve, L.Halzen, F.Hamdaoui, H.Minh, M. HaHandt, M.Hanson, K.Hardin, J.Harnisch, A. A.Hatch, P.Haungs, A.Häußler, J.Helbing, K.Hellrung, J.Hermannsgabner, J.Heuermann, L.Heyer, N.Hickford, S.Hidvegi, A.Hill, C.Hill, G. C.Hoffman, K. D.Hori, S.Hoshina, K.Hostert, M.Hou, W.Huber, T.Hultqvist, K.Hünnefeld, M.Hussain, R.Hymon, K.Ishihara, A.Iwakiri, W.Jacquart, M.Janik, O.Jansson, M.Japaridze, G. S.Jeong, M.Jin, M.Jones, B. J. P.Kamp, N.Kang, D.Kang, W.Kang, X.Kappes, A.Kappesser, D.Kardum, L.Karg, T.Karl, M.Karle, A.Katil, A.Katz, U.Kauer, M.Kelley, J. L.Khanal, M.Zathul, A. KhateeKheirandish, A.Kiryluk, J.Klein, S. R.Kochocki, A.Koirala, R.Kolanoski, H.Kontrimas, T.Köpke, L.Kopper, C.Koskinen, D. J.Koundal, P.Kovacevich, M.Kowalski, M.Kozynets, T.Krishnamoorthi, J.Kruiswijk, K.Krupczak, E.Kumar, A.Kun, E.Kurahashi, N.Lad, N.Gualda, C. LagunasLamoureux, M.Larson, M. J.Latseva, S.Lauber, F.Lazar, J. P.Lee, J. W.DeHolton, K. LeonardLeszczyńska, A.Liao, J.Lincetto, M.Liu, Y. T.Liubarska, M.Lohfink, E.Love, C.Mariscal, C. J. LozanoLu, L.Lucarelli, F.Luszczak, W.Lyu, Y.Madsen, J.Magnus, E.Mahn, K. B. M.Makino, Y.Manao, E.Mancina, S.Sainte, W. MarieMariş, I. C.Marka, S.Marka, Z.Marsee, M.Martinez-Soler, I.Maruyama, R.Mayhew, F.McNally, F.Mead, J. V.Meagher, K.Mechbal, S.Medina, A.Meier, M.Merckx, Y.Merten, L.Micallef, J.Mitchell, J.Montaruli, T.Moore, R. W.Morii, Y.Morse, R.Moulai, M.Mukherjee, T.Naab, R.Nagai, R.Nakos, M.Naumann, U.Necker, J.Negi, A.Neste, L.Neumann, M.Niederhausen, H.Noda, K.Noell, A.Novikov, A.Pollmann, A. ObertackeO'Dell, V.Oeyen, B.Olivas, A.Orsoe, R.Osborn, J.O'Sullivan, E.Pandya, H.Park, N.Parker, G. K.Paudel, E. N.Paul, L.Heros, C. Pérez de losPernice, T.Peterson, J.Philippen, S.Pizzuto, A.Plum, M.Pontén, A.Popovych, Y.Rodriguez, M. PradoPries, B.Procter-Murphy, R.Przybylski, G. T.Raab, C.Rack-Helleis, J.Ravn, M.Rawlins, K.Rechav, Z.Rehman, A.Reichherzer, P.Resconi, E.Reusch, S.Rhode, W.Riedel, B.Rifaie, A.Roberts, E. J.Robertson, S.Rodan, S.Roellinghoff, G.Rongen, M.Rosted, A.Rott, C.Ruhe, T.Ruohan, L.Ryckbosch, D.Safa, I.Saffer, J.Sampathkumar, P.Sandrock, A.Santander, M.Sarkar, S.Savelberg, J.Savina, P.Schaile, P.Schaufel, M.Schieler, H.Schindler, S.Schlüter, B.Schlüter, F.Schmeisser, N.Schmidt, T.Schneider, J.Schröder, F. G.Schumacher, L.Sclafani, S.Seckel, D.Seikh, M.Seo, M.Seunarine, S.Myhr, P. SevleShah, R.Shefali, S.Shimizu, N.Silva, M.Skrzypek, B.Smithers, B.Snihur, R.Soedingrekso, J.Søgaard, A.Soldin, D.Soldin, P.Sommani, G.Spannfellner, C.Spiczak, G. M.Spiering, C.Stamatikos, M.Stanev, T.Stezelberger, T.Stürwald, T.Stuttard, T.Sullivan, G. W.Taboada, I.Ter-Antonyan, S.Terliuk, A.Thiesmeyer, M.Thompson, W. G.Thwaites, J.Tilav, S.Tönnis, C.Toscano, S.Tosi, D.Trettin, A.Turcotte, R.Twagirayezu, J. P.Elorrieta, M. A. UnlandUpadhyay, A. K.Upshaw, K.Vaidyanathan, A.Valtonen-Mattila, N.Vandenbroucke, J.van Eijndhoven, N.Vannerom, D.van Santen, J.Vara, J.Veitch-Michaelis, J.Venugopal, M.Vereecken, M.Verpoest, S.Veske, D.Vijai, A.Walck, C.Wang, A.Weaver, C.Weigel, P.Weindl, A.Weldert, J.Wen, A. Y.Wendt, C.Werthebach, J.Weyrauch, M.Whitehorn, N.Wiebusch, C. H.Williams, D. R.Witthaus, L.Wolf, A.Wolf, M.Wrede, G.Xu, X. W.Yanez, J. P.Yildizci, E.Yoshida, S.Young, R.Yu, S.Yuan, T.Zhang, Z.Zhelnin, P.Zilberman, P.Zimmerman, M.
Source
Subject
Astrophysics - High Energy Astrophysical Phenomena
Language
Abstract
Galactic PeVatrons are sources that can accelerate cosmic rays to PeV energies. The high-energy cosmic rays are expected to interact with the surrounding ambient material or radiation, resulting in the production of gamma rays and neutrinos. To optimize for the detection of such associated production of gamma rays and neutrinos for a given source morphology and spectrum, a multi-messenger analysis that combines gamma rays and neutrinos is required. In this study, we use the Multi-Mission Maximum Likelihood framework (3ML) with IceCube Maximum Likelihood Analysis software (i3mla) and HAWC Accelerated Likelihood (HAL) to search for a correlation between 22 known gamma-ray sources from the third HAWC gamma-ray catalog and 14 years of IceCube track-like data. No significant neutrino emission from the direction of the HAWC sources was found. We report the best-fit gamma-ray model and 90% CL neutrino flux limit from the 22 sources. From the neutrino flux limit, we conclude that the gamma-ray emission from five of the sources can not be produced purely from hadronic interactions. We report the limit for the fraction of gamma rays produced by hadronic interactions for these five sources.