학술논문

Cooling trapped ions with phonon rapid adiabatic passage
Document Type
Working Paper
Source
Subject
Quantum Physics
Physics - Atomic Physics
Language
Abstract
In recent demonstrations of the quantum charge-coupled device (QCCD) computer architecture, circuit times are dominated by cooling. Some motional modes of multi-ion crystals take orders-of-magnitude longer to cool than others because of low coolant ion participation. Here we demonstrate a new technique, which we call phonon rapid adiabatic passage (phrap), that avoids this issue by coherently exchanging the thermal populations of selected modes on timescales short compared to direct cooling. Analogous to adiabatic rapid passage, we quasi-statically couple these slow-cooling modes with fast-cooling ones using DC electric fields. When the crystal is then adiabatically ramped through the resultant avoided crossing, nearly-complete phonon population exchange results. We demonstrate this on two-ion crystals, and show the indirect ground-state cooling of all radial modes--achieving an order of magnitude speedup compared to direct cooling. We also show the technique's insensitivity to trap potential and control field fluctuations, and find that it still achieves sub-quanta temperatures starting as high as n~200.