학술논문

Study of solar brightness profiles in the 18-26 GHz frequency range with INAF radio telescopes I: solar radius
Document Type
Working Paper
Source
Subject
Astrophysics - Solar and Stellar Astrophysics
Language
Abstract
The Sun is an extraordinary workbench, from which several fundamental astronomical parameters can be measured with high precision. Among these parameters, the solar radius $R_{\odot}$ plays an important role in several aspects, such as in evolutionary models. Despite the efforts in obtaining accurate measurements of $R_{\odot}$, the subject is still debated and measurements are puzzling and/or lacking in many frequency ranges. We aimed to determine the mean, equatorial, and polar radii of the Sun ($R_c$, $R_{eq}$, and $R_{pol}$) in the frequency range 18.1 - 26.1 GHz. We employed single-dish observations from the newly-appointed Medicina "Gavril Grueff" Radio Telescope and the Sardinia Radio Telescope (SRT) throughout 5 years, from 2018 to mid-2023, in the framework of the SunDish project for solar monitoring. Two methods to calculate the radius at radio frequencies are considered and compared. To assess the quality of our radius determinations, we also analysed the possible degrading effects of the antenna beam pattern on our solar maps, using two 2D-models. We carried out a correlation analysis with the evolution of the solar cycle through the calculation of Pearson's correlation coefficient $\rho$. We obtained several values for the solar radius - ranging between 959 and 994 arcsec - and $\rho$, with typical errors of a few arcsec. Our $R_{\odot}$ measurements, consistent with values reported in literature, suggest a weak prolatness of the solar limb ($R_{eq}$ > $R_{pol}$), although $R_{eq}$ and $R_{pol}$ are statistically compatible within 3$\sigma$ errors. The correlation analysis using the solar images from Grueff shows (1) a positive correlation between the solar activity and the temporal variation of $R_c$ (and $R_{eq}$) at all observing frequencies, and (2) a weak anti-correlation between the temporal variation of $R_{pol}$ and the solar activity at 25.8 GHz.
Comment: 18 pages, 12 figures, 6 tables, accepted by A&A; v1