학술논문

Constraining the reflective properties of WASP-178b using Cheops photometry
Document Type
Working Paper
Source
Subject
Astrophysics - Earth and Planetary Astrophysics
Language
Abstract
Multiwavelength photometry of the secondary eclipses of extrasolar planets is able to disentangle the reflected and thermally emitted light radiated from the planetary dayside. This leads to the measurement of the planetary geometric albedo $A_g$, which is an indicator of the presence of clouds in the atmosphere, and the recirculation efficiency $\epsilon$, which quantifies the energy transport within the atmosphere. In this work we aim to measure $A_g$ and $\epsilon$ for the planet WASP-178 b, a highly irradiated giant planet with an estimated equilibrium temperature of 2450 K.} We analyzed archival spectra and the light curves collected by Cheops and Tess to characterize the host WASP-178, refine the ephemeris of the system and measure the eclipse depth in the passbands of the two respective telescopes. We measured a marginally significant eclipse depth of 70$\pm$40 ppm in the Tess passband and statistically significant depth of 70$\pm$20 ppm in the Cheops passband. Combining the eclipse depth measurement in the Cheops (lambda_eff=6300 AA) and Tess (lambda_eff=8000 AA) passbands we constrained the dayside brightness temperature of WASP-178 b in the 2250-2800 K interval. The geometric albedo 0.1<$\rm A_g$<0.35 is in general agreement with the picture of poorly reflective giant planets, while the recirculation efficiency $\epsilon>$0.7 makes WASP-178 b an interesting laboratory to test the current heat recirculation models.
Comment: Accepted by Astronomy and Astrophysics on 31/08/2023