학술논문

Electronic band structure changes across the antiferromagnetic phase transition of exfoliated MnPS$_3$ probed by $\mu$-ARPES
Document Type
Working Paper
Source
Nano Lett. 2023, 23, 22, 10342-10349
Subject
Condensed Matter - Materials Science
Condensed Matter - Mesoscale and Nanoscale Physics
Condensed Matter - Other Condensed Matter
J.2
Language
Abstract
Exfoliated magnetic 2D materials enable versatile tuning of magnetization, e.g., by gating or providing proximity-induced exchange interaction. However, their electronic band structure after exfoliation has not been probed, most likely due to their photochemical sensitivity. Here, we provide micron-scale angle-resolved photoelectron spectroscopy of the exfoliated intralayer antiferromagnet MnPS$_3$ above and below the N\'{e}el temperature down to one monolayer. The favorable comparison with density functional theory calculations enables to identify the orbital character of the observed bands. Consistently, we find pronounced changes across the N\'{e}el temperature for bands that consist of Mn 3d and 3p levels of adjacent S atoms. The deduced orbital mixture indicates that the superexchange is relevant for the magnetic interaction. There are only minor changes between monolayer and thicker films demonstrating the predominant 2D character of MnPS$_3$. The novel access is transferable to other MPX$_3$ materials (M: transition metal, P: phosphorus, X: chalcogenide) providing a multitude of antiferromagnetic arrangements.
Comment: 26 pages, 17 figures