학술논문

Yield, Area and Energy Optimization in Stt-MRAMs using failure aware ECC
Document Type
Working Paper
Source
Subject
Computer Science - Other Computer Science
Language
Abstract
Spin Transfer Torque MRAMs are attractive due to their non-volatility, high density and zero leakage. However, STT-MRAMs suffer from poor reliability due to shared read and write paths. Additionally, conflicting requirements for data retention and write-ability (both related to the energy barrier height of the magnet) makes design more challenging. Furthermore, the energy barrier height depends on the physical dimensions of the free layer. Any variations in the dimensions of the free layer lead to variations in the energy barrier height. In order to address poor reliability of STT-MRAMs, usage of Error Correcting Codes (ECC) have been proposed. Unlike traditional CMOS memory technologies, ECC is expected to correct both soft and hard errors in STT_MRAMs. To achieve acceptable yield with low write power, stronger ECC is required, resulting in increased number of encoded bits and degraded memory efficiency. In this paper, we propose Failure aware ECC (FaECC), which masks permanent faults while maintaining the same correction capability for soft errors without increased encoded bits. Furthermore, we investigate the impact of process variations on run-time reliability of STT-MRAMs. We provide an analysis on the impact of process variations on the life-time of the free layer and retention failures. In order to analyze the effectiveness of our methodology, we developed a cross-layer simulation framework that consists of device, circuit and array level analysis of STT-MRAM memory arrays. Our results show that using FaECC relaxes the requirements on the energy barrier height, which reduces the write energy and results in smaller access transistor size and memory array area. Keywords: STT-MRAM, reliability, Error Correcting Codes, ECC, magnetic memory
Comment: This paper will be published in ACM JETC journal