학술논문

Unusual Hard X-ray Flares Caught in NICER Monitoring of the Binary Supermassive Black Hole Candidate AT2019cuk/Tick Tock/SDSS J1430+2303
Document Type
Working Paper
Source
Subject
Astrophysics - High Energy Astrophysical Phenomena
Language
Abstract
The nuclear transient AT2019cuk/Tick Tock/SDSS J1430+2303 has been suggested to harbor a supermassive black hole (SMBH) binary near coalescence. We report results from high-cadence NICER X-ray monitoring with multiple visits per day from January-August 2022, as well as continued optical monitoring during the same time period. We find no evidence of periodic/quasi-periodic modulation in the X-ray, UV, or optical bands, however we do observe exotic hard X-ray variability that is unusual for a typical AGN. The most striking feature of the NICER light curve is repetitive hard (2-4 keV) X-ray flares that result in distinctly harder X-ray spectra compared to the non-flaring data. In its non-flaring state, AT2019cuk looks like a relatively standard AGN, but it presents the first case of day-long, hard X-ray flares in a changing-look AGN. We consider a few different models for the driving mechanism of these hard X-ray flares, including: (1) corona/jet variability driven by increased magnetic activity, (2) variable obscuration, and (3) self-lensing from the potential secondary SMBH. We prefer the variable corona model, as the obscuration model requires rather contrived timescales and the self-lensing model is difficult to reconcile with a lack of clear periodicity in the flares. These findings illustrate how important high-cadence X-ray monitoring is to our understanding of the rapid variability of the X-ray corona and necessitate further high-cadence, multi-wavelength monitoring of changing-look AGN like AT2019cuk to probe the corona-jet connection.
Comment: 23 pages, 13 figures, 1 table, accepted for publication in ApJL