학술논문

First double-differential cross section measurement of neutral-current $\pi^0$ production in neutrino-argon scattering in the MicroBooNE detector
Document Type
Working Paper
Author
MicroBooNE collaborationAbratenko, P.Alterkait, O.Aldana, D. AndradeArellano, L.Asaadi, J.Ashkenazi, A.Balasubramanian, S.Baller, B.Barnard, A.Barr, G.Barrow, D.Barrow, J.Basque, V.Bateman, J.Rodrigues, O. BenevidesBerkman, S.Bhanderi, A.Bhat, A.Bhattacharya, M.Bishai, M.Blake, A.Bogart, B.Bolton, T.Book, J. Y.Brunetti, M. B.Camilleri, L.Cao, Y.Caratelli, D.Cavanna, F.Cerati, G.Chappell, A.Chen, Y.Conrad, J. M.Convery, M.Cooper-Troendle, L.Crespo-Anadon, J. I.Cross, R.Del Tutto, M.Dennis, S. R.Detje, P.Diurba, R.Djurcic, Z.Dorrill, R.Duffy, K.Dytman, S.Eberly, B.Englezos, P.Ereditato, A.Evans, J. J.Fine, R.Fleming, B. T.Foreman, W.Franco, D.Furmanski, A. P.Gao, F.Garcia-Gamez, D.Gardiner, S.Ge, G.Gollapinni, S.Gramellini, E.Green, P.Greenlee, H.Gu, L.Gu, W.Guenette, R.Guzowski, P.Hagaman, L.Handley, M.Hen, O.Hilgenberg, C.Horton-Smith, G. A.Imani, Z.Irwin, B.Ismail, M. S.James, C.Ji, X.Jo, J. H.Johnson, R. A.Jwa, Y. J.Kalra, D.Kamp, N.Karagiorgi, G.Ketchum, W.Kirby, M.Kobilarcik, T.Kreslo, I.Lane, N.Lepetic, I.Li, J. -Y.Li, Y.Lin, K.Littlejohn, B. R.Liu, H.Louis, W. C.Luo, X.Mariani, C.Marsden, D.Marshall, J.Martinez, N.Caicedo, D. A. MartinezMartynenko, S.Mastbaum, A.Mawby, I.McConkey, N.Meddage, V.Mendez, J.Micallef, J.Miller, K.Mistry, K.Mohayai, T.Mogan, A.Mooney, M.Moor, A. F.Moore, C. D.Lepin, L. MoraMoudgalya, M. M.Babu, S. MulleriaNaples, D.Navrer-Agasson, A.Nayak, N.Nebot-Guinot, M.Nowak, J.Oza, N.Palamara, O.Pallat, N.Paolone, V.Papadopoulou, A.Papavassiliou, V.Parkinson, H.Pate, S. F.Patel, N.Pavlovic, Z.Piasetzky, E.Pletcher, K.Pophale, I.Qian, X.Raaf, J. L.Radeka, V.Rafique, A.Reggiani-Guzzo, M.Ren, L.Rochester, L.Rondon, J. RodriguezRosenberg, M.Ross-Lonergan, M.Safa, I.Scanavini, G.Schmitz, D. W.Schukraft, A.Seligman, W.Shaevitz, M. H.Sharankova, R.Shi, J.Snider, E. L.Soderberg, M.Soldner-Rembold, S.Spitz, J.Stancari, M.John, J. St.Strauss, T.Szelc, A. M.Tang, W.Taniuchi, N.Terao, K.Thorpe, C.Torbunov, D.Totani, D.Toups, M.Trettin, A.Tsai, Y. -T.Tyler, J.Uchida, M. A.Usher, T.Viren, B.Wang, J.Weber, M.Wei, H.White, A. J.Wolbers, S.Wongjirad, T.Wospakrik, M.Wresilo, K.Wu, W.Yandel, E.Yang, T.Yates, L. E.Yu, H. W.Zeller, G. P.Zennamo, J.Zhang, C.
Source
Subject
High Energy Physics - Experiment
Language
Abstract
We report the first double-differential cross section measurement of neutral-current neutral pion (NC$\pi^0$) production in neutrino-argon scattering, as well as single-differential measurements of the same channel in terms of final states with and without protons. The kinematic variables of interest for these measurements are the $\pi^0$ momentum and the $\pi^0$ scattering angle with respect to the neutrino beam. A total of 4971 candidate NC$\pi^0$ events fully-contained within the MicroBooNE detector are selected using data collected at a mean neutrino energy of $\sim 0.8$ GeV from $6.4\times10^{20}$ protons on target from the Booster Neutrino Beam at the Fermi National Accelerator Laboratory. After extensive data-driven model validation to ensure unbiased unfolding, the Wiener-SVD method is used to extract nominal flux-averaged cross sections. The results are compared to predictions from commonly used neutrino event generators, which tend to overpredict the measured NC$\pi^0$ cross section, especially in the 0.2-0.5 GeV/c $\pi^0$ momentum range, at forward scattering angles, and when at least one proton is present in the final state. These measurements show sensitivity to a variety of features that complicate the description of NC$\pi^0$ production including the form factors describing the elementary neutrino interaction and the final state interactions of the outgoing particles in the residual argon nucleus. This data will help improve the modeling of NC$\pi^0$ production, which represents a major background in measurements of charge-parity violation in the neutrino sector and in searches for new physics beyond the Standard Model.