학술논문

A manufacturable platform for photonic quantum computing
Document Type
Working Paper
Author
Alexander, KoenBahgat, AndreaBenyamini, AvishaiBlack, DylanBonneau, DamienBurgos, StanleyBurridge, BenCampbell, GeoffCatalano, GabrielCeballos, AlexChang, Chia-MingChung, CJDanesh, FaribaDauer, TomDavis, MichaelDudley, EricEr-Xuan, PingFargas, JosepFarsi, AlessandroFenrich, ColleenFrazer, JonathanFukami, MasayaGanesan, YogeeswaranGibson, GaryGimeno-Segovia, MercedesGoeldi, SebastianGoley, PatrickHaislmaier, RyanHalimi, SamiHansen, PaulHardy, SamHorng, JasonHouse, MatthewHu, HongJadidi, MehdiJohansson, HenrikJones, ThomasKamineni, VimalKelez, NicholasKoustuban, RaviKovall, GeorgeKrogen, PeterKumar, NikhilLiang, YongLiCausi, NicholasLlewellyn, DanLokovic, KimberlyLovelady, MichaelManfrinato, VitorMelnichuk, AnnSouza, MarioMendoza, GabrielMoores, BradMukherjee, ShaunakMunns, JosephMusalem, Francois-XavierNajafi, FarazO'Brien, Jeremy L.Ortmann, J. ElliottPai, SunilPark, BryanPeng, Hsuan-TungPenthorn, NicholasPeterson, BrennanPoush, MattPryde, Geoff J.Ramprasad, TarunRay, GarethRodriguez, AngelitaRoxworthy, BrianRudolph, TerrySaunders, Dylan J.Shadbolt, PeteShah, DeeshaShin, HyungkiSmith, JakeSohn, BenSohn, Young-IkSon, GyeonghoSparrow, ChrisStaffaroni, MatteoStavrakas, CamilleSukumaran, VijayTamborini, DavideThompson, Mark G.Tran, KhanhTriplet, MarkTung, MaryannVert, AlexeyVidrighin, Mihai D.Vorobeichik, IlyaWeigel, PeterWingert, MathhewWooding, JamieZhou, Xinran
Source
Subject
Quantum Physics
Physics - Applied Physics
Physics - Optics
Language
Abstract
Whilst holding great promise for low noise, ease of operation and networking, useful photonic quantum computing has been precluded by the need for beyond-state-of-the-art components, manufactured by the millions. Here we introduce a manufacturable platform for quantum computing with photons. We benchmark a set of monolithically-integrated silicon photonics-based modules to generate, manipulate, network, and detect photonic qubits, demonstrating dual-rail photonic qubits with $99.98\% \pm 0.01\%$ state preparation and measurement fidelity, Hong-Ou-Mandel quantum interference between independent photon sources with $99.50\%\pm0.25\%$ visibility, two-qubit fusion with $99.22\%\pm0.12\%$ fidelity, and a chip-to-chip qubit interconnect with $99.72\%\pm0.04\%$ fidelity, not accounting for loss. In addition, we preview a selection of next generation technologies, demonstrating low-loss silicon nitride waveguides and components, fabrication-tolerant photon sources, high-efficiency photon-number-resolving detectors, low-loss chip-to-fiber coupling, and barium titanate electro-optic phase shifters.
Comment: 8 pages, 5 figures