학술논문

Magnetic field expulsion in optically driven YBa$_2$Cu$_3$O$_{6.48}$
Document Type
Working Paper
Source
Subject
Condensed Matter - Superconductivity
Condensed Matter - Strongly Correlated Electrons
Language
Abstract
Coherent optical driving in quantum solids is emerging as a new research frontier, with many demonstrations of exotic non-equilibrium quantum phases. These are based on engineered band structures, and on stimulated nonlinear interactions between driven modes. Enhanced functionalities like ferroelectricity, magnetism and superconductivity have been reported in these non-equilibrium settings. In high-Tc cuprates, coherent driving of certain phonon modes induces a transient state with superconducting-like optical properties, observed far above T$_c$ and throughout the pseudogap phase. Questions remain not only on the microscopic nature of this phenomenon, but also on the macroscopic properties of these transient states, beyond the documented optical conductivities. Crucially, it is not clear if driven cuprates exhibit Meissner-like diamagnetism. Here, the time-dependent magnetic-field amplitude surrounding a driven YBa$_2$Cu$_3$O$_{6.48}$ sample is probed by measuring Faraday rotation in a GaP layer adjacent to the superconductor. For the same driving conditions that result in superconducting-like optical properties, an enhancement of magnetic field at the edge of the sample is detected, indicative of induced diamagnetism. The dynamical field expulsion measured after pumping is comparable in size to the one expected in an equilibrium type II superconductor of similar shape and size with a volume susceptibility $\chi_v$ of order -0.3. Crucially, this value is incompatible with a photo-induced increase in mobility without superconductivity. Rather, it underscores the notion of a pseudogap phase in which incipient superconducting correlations are enhanced or synchronized by the optical drive.
Comment: 37 pages, including supplementary information