학술논문

Improving the low-energy transient sensitivity of AMEGO-X using single-site events
Document Type
Working Paper
Source
Subject
Astrophysics - High Energy Astrophysical Phenomena
Astrophysics - Instrumentation and Methods for Astrophysics
Language
Abstract
AMEGO-X, the All-sky Medium Energy Gamma-Ray Observatory eXplorer, is a proposed instrument designed to bridge the so-called "MeV gap" by surveying the sky with unprecedented sensitivity from ~100 keV to about one GeV. This energy band is of key importance for multi-messenger and multi-wavelength studies but it is nevertheless currently under-explored. AMEGO-X addresses this situation by proposing a design capable of detecting and imaging gamma rays via both Compton interactions and pair production processes. However, some of the objects that AMEGO-X will study, such as gamma-ray bursts and magnetars, extend to energies below ~100 keV where the dominant interaction becomes photoelectric absorption. These events deposit their energy in a single pixel of the detector. In this work we show how the ~3500 cm^2 effective area of the AMEGO-X tracker to events between ~25 keV to ~100 keV will be utilized to significantly improve its sensitivity and expand the energy range for transient phenomena. Although imaging is not possible for single-site events, we show how we will localize a transient source in the sky using their aggregate signal to within a few degrees. This technique will more than double the number of cosmological gamma-ray bursts seen by AMEGO-X, allow us to detect and resolve the pulsating tails of extragalactic magnetar giant flares, and increase the number of detected less-energetic magnetar bursts -- some possibly associated with fast radio bursts. Overall, single-site events will increase the sensitive energy range, expand the science program, and promptly alert the community of fainter transient events.
Comment: Accepted for publication in ApJ. Version changes: Added some minor clarifications