학술논문

Magnetic anisotropy reversal driven by structural symmetry-breaking in monolayer {\alpha}-RuCl3
Document Type
Working Paper
Source
Subject
Condensed Matter - Strongly Correlated Electrons
Condensed Matter - Materials Science
Language
Abstract
Layered {\alpha}-RuCl3 is a promising material to potentially realize the long-sought Kitaev quantum spin liquid with fractionalized excitations. While evidence of this exotic state has been reported under a modest in-plane magnetic field, such behavior is largely inconsistent with theoretical expectations of Kitaev phases emerging only in out-of-plane fields. These predicted field-induced states have been mostly out of reach due to the strong easy-plane anisotropy of bulk crystals, however. We use a combination of tunneling spectroscopy, magnetotransport, electron diffraction, and ab initio calculations to study the layer-dependent magnons, anisotropy, structure, and exchange coupling in atomically thin samples. Due to structural distortions, the sign of the average off-diagonal exchange changes in monolayer {\alpha}-RuCl3, leading to a reversal of magnetic anisotropy to easy-axis. Our work provides a new avenue to tune the magnetic interactions in {\alpha}-RuCl3 and allows theoretically predicted quantum spin liquid phases for out-of-plane fields to be more experimentally accessible.