학술논문

Techniques to seed the self-modulation instability of a long proton bunch in plasma
Document Type
Working Paper
Source
Subject
Physics - Accelerator Physics
Physics - Plasma Physics
Language
Abstract
The Advanced Wakefield Experiment (AWAKE) at CERN relies on the seeded Self-Modulation (SM) of a long relativistic proton bunch in plasma to accelerate an externally injected MeV witness electron bunch to GeV energies. During AWAKE Run 1 (2016-2018) and Run 2a (2021-2022), two seeding methods were investigated experimentally: relativistic ionization front seeding and electron bunch seeding. In the first one, a short laser pulse copropagates within the proton bunch and ionizes the rubidium vapor, generating the plasma. In the second, a short electron bunch propagates in plasma ahead of the proton bunch and drives the seed wakefields. Both seeding methods will be further employed during AWAKE Run 2b (2023-2024) to study their effect on the SM evolution in the presence of a plasma density step. In this contribution, we will show the main experimental results and discuss their impact for the future design of the experiment, in particular for Run 2c (starting in 2028), where the plasma will be split in two sections: one dedicated to SM of the proton bunch, and the other to the electron acceleration process.
Comment: Proceedings of International Particle Accelerator Conference IPAC 2023