학술논문

Initial measurement of reactor antineutrino oscillation at SNO+
Document Type
Working Paper
Author
Collaboration, SNOAllega, A.Anderson, M. R.Andringa, S.Askins, M.Auty, D. J.Bacon, A.Baker, J.Barão, F.Barros, N.Bayes, R.Beier, E. W.Bezerra, T. S.Bialek, A.Biller, S. D.Blucher, E.Caden, E.Callaghan, E. J.Chen, M.Cheng, S.Cleveland, B.Cookman, D.Corning, J.Cox, M. A.Dehghani, R.Deloye, J.Depatie, M. M.Di Lodovico, F.Dima, C.Dittmer, J.Dixon, K. H.Esmaeilian, M. S.Falk, E.Fatemighomi, N.Ford, R.Gaur, A.González-Reina, O. I.Gooding, D.Grant, C.Grove, J.Hall, S.Hallin, A. L.Hallman, D.Heintzelman, W. J.Helmer, R. L.Hewitt, C.Howard, V.Hreljac, B.Hu, J.Huang, P.Hunt-Stokes, R.Hussain, S. M. A.Inácio, A. S.Jillings, C. J.Kaluzienski, S.Kaptanoglu, T.Khan, H.Kladnik, J.Klein, J. R.Kormos, L. L.Krar, B.Kraus, C.Krauss, C. B.Kroupová, T.Lake, C.Lebanowski, L.Lefebvre, C.Lozza, V.Luo, M.Maio, A.Manecki, S.Maneira, J.Martin, R. D.McCauley, N.McDonald, A. B.Mills, C.Milton, G.Colina, A. MolinaMorris, D.Morton-Blake, I.Mubasher, M.Naugle, S.Nolan, L. J.O'Keeffe, H. M.Gann, G. D. OrebiPage, J.Paleshi, K.Parker, W.Paton, J.Peeters, S. J. M.Pickard, L.Quenallata, B.Ravi, P.Reichold, A.Riccetto, S.Rose, J.Rosero, R.Semenec, I.Simms, J.Skensved, P.Smiley, M.Smith, J.Svoboda, R.Tam, B.Tseng, J.Vázquez-Jáuregui, E.Veinot, J. G. C.Virtue, C. J.Ward, M.Weigand, J. J.Wilson, J. R.Wilson, J. D.Wright, A.Yang, S.Yeh, M.Ye, Z.Yu, S.Zhang, Y.Zuber, K.Zummo, A.
Source
Subject
High Energy Physics - Experiment
Nuclear Experiment
Language
Abstract
The SNO+ collaboration reports its first spectral analysis of long-baseline reactor antineutrino oscillation using 114 tonne-years of data. Fitting the neutrino oscillation probability to the observed energy spectrum yields constraints on the neutrino mass-squared difference $\Delta m^2_{21}$. In the ranges allowed by previous measurements, the best-fit $\Delta m^2_{21}$ is (8.85$^{+1.10}_{-1.33}$) $\times$ 10$^{-5}$ eV$^2$. This measurement is continuing in the next phases of SNO+ and is expected to surpass the present global precision on $\Delta m^2_{21}$ with about three years of data.