학술논문

Possible origins of anomalous H$\,$I gas around MHONGOOSE galaxy, NGC 5068
Document Type
Working Paper
Source
Subject
Astrophysics - Astrophysics of Galaxies
Language
Abstract
The existing reservoirs of neutral atomic hydrogen gas (H$\,$I) in galaxies are insufficient to have maintained the observed levels of star formation without some kind of replenishment. {This refuelling of the H$\,$I reservoirs} is likely to occur at column densities an order of magnitude lower than previous observational limits (N$_{\rm{H\,I}\, limit} \sim 10^{19}\,$cm$^{-2}$ at 30$''$ resolution over a linewidth of $20\,$km/s). In this paper, we present recent deep H$\,$I observations of NGC 5068, a nearby isolated star-forming galaxy observed by MeerKAT as part of the MHONGOOSE survey. With these new data, we are able to detect low column density H$\,$I around NGC 5068 with a $3\sigma$ detection limit of N$_{\rm{H\,I}} = 6.4 \times 10^{17}\,$cm$^{-2}$ at 90$''$ resolution over a $20\,$km/s linewidth. The high sensitivity and resolution of the MeerKAT data reveal a complex morphology of the H$\,$I in this galaxy -- a regularly rotating inner disk coincident with the main star-forming disk of the galaxy, a warped outer disk of low column density gas (N$_{\rm{H\,I}} < 9 \times 10^{19}\,$cm$^{-2}$), in addition to clumps of gas on the north west side of the galaxy. We employ a simple two disk model that describe the inner and outer disks, and are able to identify anomalous gas that deviates from the rotation of the main galaxy. The morphology and the kinematics of the anomalous gas suggest a possible extra-galactic origin. We explore a number of possible origin scenarios that may explain the anomalous gas, and conclude that fresh accretion is the most likely scenario.
Comment: 17 pages, 13 figures, 5 tables. Accepted for publication in A&A