학술논문

Current manipulation of Giant tunneling altermagnetic resistance in collinear Antiferromagnetic RuO2/MgO/RuO2 sandwich structure
Document Type
Working Paper
Source
Subject
Physics - Applied Physics
Language
Abstract
As an emerging non-volatile memory technology, magnetic random access memory (MRAM) has key features and advantages including non-volatility, high speed, endurance, low power consumption and radiation tolerance. Conventional MRAM utilizes magnetic tunnel junctions (MTJs), which consist of two ferromagnetic layers separated by an insulating tunnel barrier. The orientation of the magnetic layers represents the binary data (0 or 1), and electrical resistance changes depending on the relative orientation of these magnetic layers. Despite these advancements, the quest for a swifter, more stable magneto-resistive random-access memory paradigm persists. In this vein, we present a groundbreaking development: room-temperature antiferromagnetic tunnel junctions devoid of any net magnetic moment. Over 200% tunneling altermagnetic resistance (TAR) ratio was measured at RuO2 (110)/MgO/RuO2 (110)/W structure, which is achieved by changing the antiferromagnetic Neel vector of RuO2 with an ultralow current density 2 MA*cm-2.
Comment: Modification required