학술논문

Coupler-Assisted Leakage Reduction for Scalable Quantum Error Correction with Superconducting Qubits
Document Type
Working Paper
Source
Subject
Quantum Physics
Language
Abstract
Superconducting qubits are a promising platform for building fault-tolerant quantum computers, with recent achievement showing the suppression of logical error with increasing code size. However, leakage into non-computational states, a common issue in practical quantum systems including superconducting circuits, introduces correlated errors that undermine QEC scalability. Here, we propose and demonstrate a leakage reduction scheme utilizing tunable couplers, a widely adopted ingredient in large-scale superconducting quantum processors. Leveraging the strong frequency tunability of the couplers and stray interaction between the couplers and readout resonators, we eliminate state leakage on the couplers, thus suppressing space-correlated errors caused by population propagation among the couplers. Assisted by the couplers, we further reduce leakage to higher qubit levels with high efficiency (98.1%) and low error rate on the computational subspace (0.58%), suppressing time-correlated errors during QEC cycles. The performance of our scheme demonstrates its potential as an indispensable building block for scalable QEC with superconducting qubits.
Comment: 25 pages, 15 figures