학술논문

Determination of positive anode sheath in anodic carbon arc for synthesis of nanomaterials
Document Type
Working Paper
Source
Subject
Physics - Plasma Physics
Language
Abstract
In the atmospheric pressure anodic carbon arc, ablation of the anode serves as a feedstock of carbon for production of nanomaterials. It is known that the ablation of the graphite anode in this arc can have two distinctive modes with low and high ablation rates. The transition between these modes is governed by the power deposition at the arc attachment to the anode and depends on the gap between the anode and the cathode electrodes. Probe measurements combined with optical emission spectroscopy (OES) are used to analyze the voltage drop between the arc electrodes. These measurements corroborated previous predictions of a positive anode sheath (i.e. electron attracting sheath) in this arc, which appears in both low and high ablation modes. Another key result is a relatively low electron temperature (~ 0.6 eV) obtained from OES using a collisional radiative model. This result partially explains a higher arc voltage (~ 20 V) required to sustain the arc current of 50-70 A than predicted by existing simulations of this discharge.
Comment: 38 pages, 25 figures, submitted to Journal of Physics D: Applied Physics